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In random systems, the density of states of various linear problems, such as 
phonons, tight-binding electrons, or diffusion in a medium with traps, exhibits 
an exponentially small Liftshitz tail at band edges. When the distribution of the 
appropriate random variables (atomic masses, site energies, trap depths) has a 
delta function at its lower (upper) bound, the Lifshitz singularities are pure 
exponentials. We study in a quantitative way how these singularities are affected 
by a universal logarithmic correction for continuous distributions starting with 
a power law. We derive an asymptotic expansion of the Lifshitz tail to all orders 
in this logarithmic variable. For distributions starting with an essential 
singularity, the exponent of the Lifshitz singularity itself is modified. These 
results are obtained in the example of harmonic chains with random masses. It 
is argued that analogous results hold in higher dimensions. Their implications 
for other models, such as the long-time decay in trapping problems, are also 
discussed. 

KEY WORDS: Random harmonic chains; Lifshitz singularities; trapping 
problems; density of states. 

1. I N T R O D U C T I O N  

Lifshi tz  n o t i c e d  in 1964 ~) t ha t  r a n d o m n e s s  s t rong ly  affects the  b a n d  edges  

of  the  spec t ra  o f  p h o n o n s ,  t i g h t - b i n d i n g  e l ec t rons ,  etc., in sol ids:  the  usua l  

V a n  H o v e  p o w e r - l a w  s ingular i t i es  a re  r ep l aced  by e x p o n e n t i a l l y  smal l  tails. 

A l t h o u g h  m u c h  r i g o r o u s  w o r k  has  been  d e v o t e d  to  Lifshi tz  s ingular i t ies  

(see, e.g., ref. 2 a n d  references  there in) ,  the i r  prec ise  ana ly t i ca l  f o r m  is n o t  

easy  to der ive  w i th in  specif ic  mode l s ,  even  in one  d imens ion .  
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This paper will be mainly concerned with the Lifshitz tails in 
disordered harmonic chains. The equation of motion for the atomic 
displacements at frequency co/2~ reads 

-mnco2an=an+l +an 1-2an (1.1) 

where the masses rnn are independent random variables with a common 
distribution p(m) dm. The Lifshitz phenomenon occurs when the support of 
the mass distribution does not extend down to zero. We choose units such 
that this lower bound is m = 1. 

The integrated density of states (IDS), denoted H(coa), is defined as 
being the fraction of eigenvalues of Eq. (1.1) less than some e) 2. The 
maximal eigenvalue being (/)max2 = 4, the key question is: How does the IDS 
approach unity as co 2--, 4 ? Lifshitz' original argument (i) is the following. 
The succession of a large number N of light masses (m = 1) is needed to 
have an eigenmode at 

co 2 = 4 cos2(e/2) ~ 4 - e 2 (1.2) 

with e ~ ~/N. Hence, if p denotes the probability to have m = 1, the IDS 
exhibits the following exponentially small "Lifshitz tail": 

1 - H(co 2) = H,.(co 2) ~ p~/~ (1.3) 

This argument has been refined, and made rigorous in various instances, 
both for continuum and lattice models in any dimension d. The usual 
statement of those results reads (2) 

In H, d 
lirn ~ in ii-i-~e] = (1.4) 

Unfortunately, this regorous equality, involving two logs, does not provide 
a very precise description of the actual behavior of Hc(CO2). 

We have studied in refs. 3-6 binary mass distributions, where m,  = 1 
or M > 1 with probabilities p and 1 - p, respectively. Our  main result reads 

Hc(co 2) ~ p~/~ QOz/~) (1.5) 

The amplitude Q is a periodic function of its argument n/e with unit period 
and depends on the mass ratio M. In the M ~  oo limit, considered by 
Domb et al., Iv) the periodic amplitude assumes a very simple form: 
Q(x) = ( 1 -  p)p~,t(x)-x, where Int(x)  denotes the integer part  of x. It  was 
argued in ref. 5 that Eq. (1.5) gives the asymptotic behavior of the IDS for 
any distribution in which the lightest mass m = 1 occurs with a nonzero 
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weight p. This statement has been confirmed in ref. 6, where we studied in 
detail a family of exactly soluble models (8~ (diluted exponential dis- 
tribution). In this case, we gave an analytical derivation of Eq. (1.5) and 
expressed the Fourier coefficients of Q in terms of the solution of a differen- 
tial equation. 

The aim of the present paper is to obtain an accurate, even though not 
rigorously proven, estimation of the IDS in cases where the mass 
distribution starts in a continuous way at m = 1, with no delta function. 
The possible occurrence of a logarithmic correction to Eq. (1.3) in such 
cases was considered by previous authors. ~9'1~ In particular, a rigorous 
lower bound to He(co 2) involving a logarithmic factor is given in ref. 10. 

We obtain, using more quantitative but less rigorous tools, this 
leading logarithmic correction to the Lifshitz tail as well as a systematic 
expansion beyond it. We put special emphasis on distributions starting as a 
power law 

p ( m ) ~ A c ~ ( ~  ~ - ~  ( 6 ~ 0 )  (1.6) 

with the notation 

mn= 1 +6,, (1.7) 

Our final result is given in Eq. (3.44). 
Let us first present a rough heuristic estimate of the Lifshitz tail 

associated with such a mass distribution. Since the lhs of Eq. (1.1) reads 
approximately - (4 + 46n - ~ ; 2 ) a  n ,  the highest eigenmode of a succession of 
N light masses will be little sensitive to the actual values of the 6n, and 
hence stay around e ,-~ reiN, independently of the boundary conditions 
inherited from the rest of the chain, as long as 46,,< e 2. Since such a 
collective event occurs with a probability of the order of ,~2~u, w e  get the 
following very crude approximation: 

2~z~ Iln el)  (1.8) H,  ~ exp 

A more accurate derivation of this result, including all subleading powers 
of Iln el, is given in Section 3. 

The general setup of this paper is a follows. Section 2 is devoted to an 
analogue of the Lifshitz phenomenon in a simpler model, namely the 
distribution of the random variable z = 1 + x l  + x l x 2  + x ~ x 2 x 3  + .. . .  We 
show how the exponential tail of the distribution of z, obtained in an exact 
way for a particular example, can indeed be derived in the general case. In 
Section 3, we apply the same techniques (exact solution + general case) to 
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the Schmidt function and to the IDS of random harmonic chains. Our 
analytical results are compared to numerical data. Section4 contains a 
generalization of the results to other mass distributions (essential 
singularities), to other models (localization, trapping problem), and to 
higher dimensions. 

2. A S IMPLE  M O D E L  

2.1. Prel iminaries 

Before studying the Lifshitz tail of random harmonic chains, we con- 
sider a simpler disordered model which exhibits a very analogous behavior. 
Consider an infinite sequence of independent random variables x ,  with a 
common probability distribution p(x)dx ,  and define the variable 

z =  ( I  x , = l + x , + x l x 2 + x l x 2 x 3 +  . . .  (2.1) 
n~>0 i = l  

This quantity has been met in probability theory (11) and in different exam- 
ples of one-dimensional disordered physical systems, such as the Ising 
chain in a random field (12) or random walk in a random medium. (13 15) 

Let R(z) be the probability density of the random variable z. The 
large-z behavior of R(z) strongly depends on the distribution of the x, .  (16) 
To be more specific, let b denote the upper bound of p(x). If b < 1, z has a 
finite upper bound B = ( 1 - b )  1. If b > l ,  but [ . lnxp(x)  dx<O, then 
R(z) ~ z -~+ 11, where the exponent c~ is given by ~ x~p(x) dx = 1. 

The marginal case b = 1 is reminiscent of the Lifshitz phenomenon. A 
large number N of consecutive x ,  close to unity are indeed necessary to 
build up a value z ~ N. Hence, the situation is analogous to that of random 
harmonic chains, described in the introduction. In the x,  take their largest 
value b = 1 with a nonzero probability p, then R(z) ..~ pZ. This exponential 
decay is very similar to the Lifshitz tail of the IDS (1.3), where p is the 
probability of occurrence of the lightest mass. The rest of this section is 
devoted to the more subtle situation where p vanishes, p(x) ending up at 
b = 1 with no delta function. 

2.2. An Exactly Soluble Example 

We have shown in ref. 16 that the probability density R(z) can be 
obtained in an exact way for a particular class of power-law distributions 
p(x) dx. This family of exactly soluble cases contains one example of 
interest for the present purpose, namely 

p ( x ) = G x  ~ 1 (0~<x~< 1) (2.2) 
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where ~7 > 0 is an arbitrary parameter. It has indeed been shown in ref. 16 
that R(z)  obeys the following differential-difference equation: 

(z - 1) R'(z)  + (1 - or) R(z)  + ~R(z  - 1) = 0 (2.3) 

This relation yields a closed-form expression for the Laplace transform 
F(s) = ~ e - = R ( z )  dz of the distribution of z, 

fO - t  1 F(s) = e x p [ - s  + aG(s)],  G(s) = - -  dt (2.4) 
t 

The density R(z)  is given by the inverse Laplace formula 

R(z)  = f 
ds 

exp[s(z - 1) + crG(s)] (2.5) 

and the large-z behavior of this exact expression can be obtained by 
applying the steepest descent method to the integral. The saddle point 
(negative) value sc of s is given by the transcendental equation 

- s c = l n  ( - s c ) 7 + l  (2.6) 

and we get the following estimate: 

R ( z ) ~  [2zG"(s, .)]  1/2 e x p [ s c ( z -  1) + G(s,,)] (2.7) 

We will discuss the large-z behavior of this result in the next subsection, 
after having derived an asymptotic expression for R(z)  valid for any power- 
law distribution. 

2.3. The General Case 

Our aim is now to obtain an estimate of the large-z behavior of the 
density R(z)  for an arbitrary distribution of the xn ending up as a power 
law at b = 1. Let us define 

x~ = 1 - an (2.8) 

and assume that the probability density of 6,, reads 

~(6) ~ A~6 ~ -1 (6 --* 0) (2.9) 

so that the probability that 6n is less than some 6 reads 

"[z(6),~A6 ~ (6 --, O) (2.10) 
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The density R(z) of the variable z defined in Eq. (2.1) is the limit of the 
densities of an infinite sequence of variables z, ,  defined through the 
recursion 

zn=l+xnzn 1 (2.11) 

where the xn have the common probability density p(x). Hence, the 
distribution R(z)dz is invariant under the transformation (2.11). This 
property is expressed by an integral equation (16) 

of the type of those introduced by Dyson (~7) and Schmidt. (18) We will 
therefore refer to Eq.(2.12) as the Dyson-Schmidt equation of the 
problem. 

The large-z behavior of R(z) can be extracted from Eq. (2.12) as 
follows. Since R(z) is rapidly decreasing, the integral is dominated by 
values of x close to unity, i.e., small values of 6. It is therefore legitimate to 
approximate Eq. (2.12) as 

R(z + 1) ~ f ~(6) d6 R(z + z6) (2.13) 

We then set R(z)= e x p [ - - c ~ ( z ) ] ,  expand the integrand as 

R(z + z6) ~ exp [ -c~q~(z) - ~qS'(z) z6 ] 

and perform the integral with the distribution (2.9). We end up with an 
implicit equation for ~b'(z) 

~ ' (z)  = 2 - kt + In cb'(z) (2.14) 

with the notation 

)~ = In z (2.15) 

= (l/c0 ln[AF(~ + 1 )] - I n  ~ (2.16) 

Hence we have ~ ' ( z ) ~  in z, and ~ ( z ) ~  z In z, up to subleading powers of 
in z. This suggests the change of variable 

qS(z) = zg(2) (2.17) 

Then Eq. (2.14) yields 

g(2) + g'(2) = f ( 2 )  = 2 - # + In f(2) (2.18) 
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Let us show that Eq. (2.18) is equivalent to Eq. (2.7) in the case of 
exactly soluble distributions (2.2), up to terms of relative order 1/z in q~(z), 
i.e., terms of order e -x in g(2). Since the present case corresponds to ~ = 1 
and kt--ln or, the second equality of (2.18) is equivalent to Eq. (2.6) with 
-&,=f(2) .  We also have to identify ~ rG(s )=-Z[Sc+g(2) ] .  The first 
equality of Eq. (2.18) is then a consequence of the stationarity condition 
z = -aG'(sc) for the integrand in Eq. (2.5) at the saddle point. Of course, 
Eq. (2.5) contains the whole analytic structure of R(z), whereas Eq. (2.18) 
only yields its asymptotic form for large z. In particular, since Eq. (2.18) is 
the result of a local analysis of the Dyson-Schmidt equation (2.12), it 
cannot predict the absolute normalization of the Lifshitz tail of R(z), which 
depends on the mass distribution in a global way. 

Equation (2.18) yields an asymptotic expansion of ~(z) to all orders in 
2. Indeed, since the relevant values of 6 in the integral (2.13) are of order 
(z In z) 1, our approach is correct up to terms of order e-;', which is also 
the order of the unknown integration constant in Eq. (2.18). We first 
expand f (2 )  for 2--* +oo as 

- K2+K + V  K2+K 

1 
+ ~ K 3 - 3 K 2 +  + .. + )-~-S ( - I ~ K  4 K)  �9 (2.19) 

with the notation 

K = In 2 - # (2.20) 

where 2 and # have been defined in Eqs. (2.15)-(2.16). We then integrate 
this expansion term by term, according to Eq. (2.18), and we end up with 

R(z )~exp  -c~z 2+Po(K)+ ~ 2j J)  

,with 

Po(K) = Pl(K) = K -  1 

P2(K)= - v  1 K 2 + 2 K - 2  

P3(K ) = �89 K 3 _ 5 K 2 + 6 K -  6 

P4(K) = - �88 K 4 + ~z K 3 _ ~ K 2 + 2 4 K -  24 

It can now be checked that the approximations that were needed to derive 
Eq. (2.14) from Eq. (2.12) are indeed correct in the z ~ oo limit. 
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3. R A N D O M  H A R M O N I C  C H A I N S  

3.1. Preliminaries 

In this subsection, we recall briefly some useful definitions used in the 
study of the spectra of random harmonic chains. We introduce the ratio 
Ricatti variable) 

un = an/an+ 1 (3.1) 

m terms of which the equation of motion (1.1) reads 

u n = ( 2 - m ~ c o 2 - u n  1) -1 (3.2) 

where the masses m, have the common probability density p(m). The dis- 
tribution of the random variables u,, approaches, as n --* 0% an invariant 
distribution R(u) du. The Dyson-Schmidt integral equation r expressing 
this invariance reads 

1 ( ,  

R(u) = ~-~ j p(m) dm R(2 - moo 2 - -  tt --1 ) (3.3) 

The IDS H ( ~  2) is equal to the probability that u is negative, 

H(~o2)= f~oo R(u) du; H,.(~2)-= f o ~  R(u) du (3.4) 

as a consequence of a well-known theorem by Sturm. 

3.2. An Exactly Soluble Example 

Just as we did in Section 2, we first present the exact evaluation of 
H(co 2) for a particular mass distribution before studying the general case. 
Among those distributions already mentioned in the introduction, those of 
interest for the present purpose read 

~(,~) = ( 1 / M ) e - ~ / M  (3.S) 

with the notation (1.7): m, = 1 + 6,. The associated IDS is given by (8) 

H C = (1/Tz){z - Im [t/(1 - C1 )] } (3.6) 

where e is as in Eq. (1.2), ~/= iM cotan(e/2), and the complex sequence Ck 
obeys the recursion relation 

Ck + 1 + C~_ 1 - 2Ck = U, Ck (3.7) 
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with 

1 - -  e 2ike 

U k  - - -  ( 3 . 8 )  
kq 

together with the boundary conditions C O = 1; lim k ~ oo Ck = 0. The rather 
lengthly derivation of these results will not be repeated here. We just men- 
tion that the Ck are related in a simple recursive way to the moments/~k of 
the above-defined invariant measure R(u) du, and that Eq. (3.6) is a mere 
transcription of Eq. (3.4) in the language of the Ck. 

In order to extract the Lifshitz tail of H,, at e ~ 0  from the exact 
expression (3.7), we perform the same manipulations as we did in ref. 6 for 
the case where b = 0 occurs with a nonzero probability p. We end up with 

dH I w(x) dx d(D2,~3 4ine 2 e~X/~ f (x)  2 (3.9) 

where w(x)=(1-e -X) / x+e  -x. The idea beyond the derivation of 
Eq. (3.9) is the assumption that the sequence C~ admits an analytic scaled 
limit f (x)  as e--+0 and k-~ +oo simultaneously, the complex quantity 
x = - 2 i k e  being kept fixed. Then f (x)  obeys the following difference 
equation: 

A J ( x ) = f ( x + 2 i e ) + f ( x - 2 i e ) - 2 f ( x ) =  -4eZV(x)f(x) (3.10) 

with 

[ - - e  x 

V ( x )  = - -  
4Mx 

which is just the scaled limit of Eq. (3.7). As long as the complex variable x 
remains bounded, Eq. (3.10) becomes the differential equation f " ( x ) =  
V(x) f (x)  in the e -~ 0 limit. This procedure was indeed used in ref. 6, where 
we only needed the values o f f ( x )  for Re x = l n  p (finite). It turns out that 
f (x)  is needed for Re x -~  - ~  in the present situation, and that the ~ ~ 0 
limit of Eq. (3.10) is less trivial, since the potential V(x) becomes large. The 
rapid increase of V(x) can be taken into account as follows. If we assume 
that there exists a "renormalized potential" VR(x) such that 

f " ( x ) =  VR(x)f(x) (3.11) 
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then we have f(2n)(x) ~ VR(X) n f ( x )  for Re x - o  oo, and the action of the 
difference operator A~ can be resummed as 

(2i~) 2" 
3~f(x)=2 ~ (2n)! f(2m(x) 

n>~l 

2{cos[2~VR(x) 1/2] - 1 } f(x)  (3.12) 

A comparison with Eq. (3.10) then gives the relationship between both 
potentials 

q(x) = t~,VR(X) 1/2 ~- sin - 1  Fc, V(x) I /2 -]  (3.13) 

The last steps of the analysis are now simple, since both the WKB 
method for Eq. (3.11) and the steepest descent method for the integral (3.9) 
become exact in the ~ ~ 0 limit. The WKB expression for f (x)  reads 

f ( x ) ~ e x p [ - l j o q ( y ) d y  (3.14) 

The saddle point of the integrand e~X/'f(x) 2 then corresponds to q =  1t/2, 
i.e., x = xc, where xc is the solution of 

1 - e  -~ 1 
V(x~)= 4mx,-- ~2 (3.15) 

and we end up with the estimate 

dcoZ ~ H~ ~ exp nxc-2  q(y) dy (3.16) 

As we did in Section 2, we postpone the discussion of the small-e behavior 
of this expression to the next subsection. 

3.3. The  S c h m i d t  Funct ion  at the  Band Edge 

The subsection is devoted to the asymptotic behavior, for e = 0, of the 
invariant probability density R(u) defined in Section 3.1. The integrated 
density Z(u) = ~ u  R(u') du' is often referred to as the Schmidt function of 
the problem. We consider mass distributions starting with an arbitrary 
power law (1.6) 

r ~ Ae6 ~- ~ (3.17) 
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with the nota t ion  (1.7): m = 1 + 3. The support  of R(u) is then - 1  ~< u ~< 0. 
We perform the change of variable 

u,, = -1 + 1/vn (3.18) 

and we introduce the invariant  density S(v) such that  R(u)du= S(v)dr. 
Equat ion  (3.2), for e = 0, i.e., co2= 4, now reads 

(1 +46n)v , ,_ l  + 1 
(3.19) 

v, = 1 + 45n vn _ 1 

and the Dyson-Schmid t  equat ion (3.3) becomes 

~(5) d6 [ f S(v) (3.20) 
= ~  [1 -46(v- 1)] 2 1 - -  4 ~ - V - -  li 

The large-v behavior  of S(v) can be estimated as follows. Since this 
function is expected to decrease very rapidly, we approximate  Eq. (3.20) for 
small 5 as 

S(v+ 1) m f /5(3)  d5 S(v + 4t;zfi) (3.21) 

This equat ion is very similar to Eq. (2.13), and so is the way to solve it. We 
define 

S(v) = exp[  - avg(2)]  (3.22) 

with 

2 = In v (3.23) 

and we obtain 

g(2) + g'(2) = f()~) = 22 - kt + In f ( 2 )  (3.24) 

with the nota t ion 

kt = (1/:r l n [ A F ( a  + 1 )] - ln(4c0 (3.25) 

The following expansion of S(v) for large v then follows, along the very 
same lines as in Section 2 .3 :  

exp I -ocv ~22 + Qo(K) + y' Qj(K!]'~ (3.26) S(v )= 
j>.l (22)s | )  t. L 
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Qo(K) = Q~(K) = K -  2 

Q2(K) = - �89 K ~ + 3 K -  6 

Q3(K ) = �89 K 3 _ 7 K 2 + 1 5 K -  30 

Q4(K ) = _ 1 K 4 + ~ K 3 _ 26K 2 + 1 0 5 K -  210 

and with the no ta t ion  

K =  l n ( 2 2 ) - / ~  

where 2 and # are as in Eqs. (3.23)-(3.25). 

(3.27) 

z - 1  
u = i, (3.28) 

e i e  - -  z e  - 

and to parametr ize  the circle by 

z = e -2i~p (0 ~< ~0 ~< ~) (3.29) 

In terms of this angle, the t rans format ion  (3.2) becomes,  up to first order  in 

~Sn, 

46n 2 
(~n = ( ~ n -  1 "~- 5 - -  sin (q~o- 1 + 5) (3.30) g 

Let T~(~p) denote  the invar iant  density such that  R ( u ) d u =  T~(q~)dq~. It  
follows f rom Eq. (3.4) and f rom the definition of ~o that  the IDS  is given by 

f0 ~ -8  f x H(co 2) = T~(q~) do;  He(e) 2 ) = T~(~o) do  (3.31t 

Not ice  that  the Lifshitz mechan i sm now appears  very clearly: a large 
n u m b e r  N ~  ~/5 of light a toms,  with 6,  < 52, is needed for q~ to be close to 
~, and hence to get a cont r ibut ion  to H c. 

3.4. The Schmidt Function Close to the Band Edge 

We now generalize the results of the previous subsection to the vicinity 
of the band  edge, i.e., to small, nonzero  values of e. The suppor t  of the 
invar iant  dis t r ibut ion R(u)du  is then the whole real line, and it is advan-  
tageous to m a p  the u axis onto  the unit  circle th rough  ~5) 



Lifshitz Tails in Random Systems 13 

In order to determine the small-e behavior of T,(q)), let us rewrite 
Eq. (3.3) in terms of the angle q~, and for small 6, as 

T~(qg + ~)~ f P(b) df T~ ( <? +48 sin2 ~~ (3.32) 

This equation is analogous to Eqs. (2.13) and (3.21), and the way to solve 
it will also be very similar to what we did previously. 

We still consider the power-law mass distributions (1.6). We set 
T~(~p)=expl--qs((p)],  linearize the integrand in Eq. (3.32), and perform 
the integration. We obtain 

e~o'(q)) = c~ ln[-(4/~) sin 2 9 q~'(q))] - ln[-AF(~ + 1)] (3.33) 

The change of function 45(<p)= (c(e)X(~0) then yields 

X'(qo) - In X'(cp) = 2A - # + 2 In sin q) (3.34) 

where # is as in Eq. (3.25), and with 

A = Iln el (3.35) 

In analogy with Eqs. (2.18) and (3.24), Eq. (3.34) yields an asymptotic 
expansion of In T~(q~) for fixed ~o in the e ~ 0 limit. We first derive the 
expansion 

X'(q))=2A+J+ + ~ - 5  ( - j 2 + 2 j )  + (2 j3 -9 j2+gj )  

1 
+ ~ ( - 3J  4 + 22J 3 - 36J 2 + 12J) + ...  (3.36) 

with 

J =  K +  2 In sin (p, K =  ln (2A)- /~  (3.37) 

A term-by-term integration then yields 

( I T~(q~)~exp - cj_~_~ 2 A + R o ( q ) ) +  ~ ( - ~ 2 j j  
8 j>~l 

with 

Ro(q~ ) -- Rm((O ) = L 1 + K 

R:(•) -- �89 + 2(1 - K)L1 + 2K-  K 2] 

R3(cp) -- 112L3 + 3 ( 2 K -  3)L:  + 6(K 2 - 3 K +  1 )L 1 + 2K 3 - 9K 2 + 6K] 

R4(~o) = ~ [ - -  3L4 + 2( - 6 K +  11 )L3 + 6( - 3K 2 + 1 1 K -  6)L2 

+ 6 ( - 2 K  3 + l l K  2 -  1 2 K + 2 ) L  1 -  3 K 4 + 2 2 K  3 -  36K2+ 12K] 
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where the functions Lj(q)) are defined th rough  

l f o '  Lj(q)) = -~ dt (2 in sin t) j (3.39) 

3.5. The Integrated Density of States 

We are now able to obta in  an asympto t ic  expansion for the logar i thm 
of the IDS  associated with any mass  distr ibution start ing with a power  law 
(1.6). In  virtue of Eq. (3.31), we have 

H c ~ T~(x) (3.40) 

and we can therefore use the result (3.38). We still have to evaluate the 
integrals I j =  Lj(x). This is readily done  by noticing that  

( ) fo z .x2x [ d y  F ( x + l / 2 )  
d j 1 at (sin t) = ~-~XJx_O ~ ( - x ~ i )  (3.41) I j =  ~xx x=o ~ 

This equa t ion  relates in a recursive way the Ij to the differences 

Zjj=~I(J-1)(1)--~I(J 1)(1) 

= ~ ( - -  1 ) J ( 2 ; -  2 ) ( j  - 1)! ~(j), j>~2 (3.42) 
( - 2 1 n 2 ,  j = l  

We thus obta in  

I~ = A 1 = - 2  In 2 

12 = AT + A2 = 4 In 2 2 + rc2/3 

13 = A~ + 3A~A 2 + A3 = - 8  In 3 2 - 2z 2 In 2 -  12~(3) 

14= A 4 + 4 A I A 3  + 3A~ 2 + 6 A ~ A 2 + A 4  

= 16 In 4 2 + 8~ 2 In 2 2 + 96 In 2 ~(3) + 19x4/15 

and out  final result reads 

g ~ = e x p  - - -  A + S o ( v ) +  ~ 
j~>~ (2A)JJ J 

with 
So(v) = Sl(v ) = v/2 

S2(v) = ( 1 / 4 ) ( - v  2 + 2v - x2/3) 

S3(v) = (1/12)[2v 3 - 9v z + 2(7z 2 + 3)v - 3~ z - 24ff(3)] 

S4(v) = (1/24){ - 3v 4 + 22v 3 - 6(~ 2 + 6)v 2 

+ [22x 2 + 144ff(3) + 12] v - 12x 2 - 264~(3) - (19/5)n ~} 

(3.43) 

(3.44) 
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with the notation 

v = K -  2 In 2 = ln(A/2) - # (3.45) 

where A, p, and K are defined in Eqs. (3.35), (3.25), and (3.37), respec- 
tively. 

Let us now prove that the present approach is equivalent to the exact 
solution discussed in the previous subsection. To do so, we define, for 
0 .<, q <~ g/2, the function x(q) as being the reciprocal of q(x), introduced in 
Eq. (3.13), and the function 

F(q) = qx(q) - [~(q) q(y) dy (3.46) 
~0 

A comparison with Eq. (3.16) shows that the result of the exact solution 
reads Hc mexp[(2/e)F(rc/2)], since x ( 0 ) ~  0 with e, and x(~/2)=xc.  On 
the other hand, F(q) clearly satisfies dF/dq = x(q), and x(q) is such that 

1-e-x(q) sin 2q 
V[x(q)] = 4Mx(q) e 2 (3.47) 

This last equation is equivalent to Eq. (3.34), up to exponentially small 
terms in x(q), with the identification -x (q)= X'(~0), and # = - ln(4M).  We 
have therefore F(q) = -X(q~)*_q for 0 ~< q ~< ~z/2. Since X(n) = 2X(~z/2), 
both methods are equivalent, up to all orders in a 1/2 expansion. 

The method that has led us to the expansion (3.44) of the IDS also 
provides a useful tool to get a good numerical estimate of Hc for 
reasonable values of e. Let us go back to Eq. (3.34). For a small but finite e, 
this equation only admits a solution when its rhs is larger than unity, i.e., 
for q)0~<q~<~-~0o, with sin(po=e~+l)/2e. Since the excluded regions 
0 ~< q0 ~< ~o o and ~z - q~o < ~0 ~< g have a length of order e, the integral 

H c(l)- exp [ -  - -~f~o -~~176176 ] a  0 (3.48) 

provides a faithful resummation of the asymptotic, but surely divergent, 
expansion (3.44). 

We have performed some numerical tests of the efficiency of the 
integral resummation (3.48). We have obtained numerical values of the 
IDS of random chains by two means. The first method concerns the exactly 
soluble (exponential) mass distributions (3.5). It consists in solving the 
difference equation (3.7) through a complex continued fraction, and in 
extracting H c from Eq. (3.6). The second method consists in solving 

822/52/1-2-2 
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iteratively Eq. (3.2) for a very large sample of N =  10 6 atoms. The IDS is 
then given as being the fraction of negative ratios un. This technique has 
the advantage of being efficient for any mass distribution, but the draw- 
back of the limitation Hc > 1IN. We have used it for pure power-law 
distributions 

~(6) =Aa3 ~-~ (0~<6<A l/a) (3.49) 

Figures 1-4 present comparisons of numerical data obtained by both 
methods mentioned above with the estimate (3.48). The agreement is 
always satisfactory; remember that our analytical approach cannot predict 
the overall scale of Lifshitz tails, which corresponds to a vertical shift on 
these logarithmic plots. 

4. G E N E R A L I Z A T I O N  A N D  D I S C U S S I O N  

We presented in Section 3 an analytical method that provides both a 
full asymptotic expansion (3.44) and a useful closed-form integral resum- 
mation (3.48) of the Lifshitz tail of the IDS of random harmonic chains 
with any mass distribution starting as a power law (1.6). 

15 

10 

I 
-[nH c 

I I I I I 

a : 0 . 2  / 
/ 

A=0.5 / / 

- S f  

f 

0 /" I I I I I 
0 2 L, 6 8 10 

l 
12 

Fig. 1. Logarithmic plot of H,.(co 2) = 1 -  H(co 2) versus n/e for the pure power-law mass 
distribution (3.49) with c~=0.2 and A =0.5. ( - - )  Numerical data obtained, as explained 
in the text, by iterating Eq. (3.2). ( - - )  Integral expression (3.48), resumming the asymptotic 
expansion (3.44). Note the damped oscillations at small integer values of g/e, reminiscent of 
the periodic amplitude Q of Eq. (1.3). 
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/ ~ / / / / / /  

/ ""I I l re" / E: 
2 l, 0 B 
S a m e  as  Fig.  1, w i th  ~ = 0.5 a n d  A = 1. 

10 

The method can be extended to other mass distributions. We illustrate 
its generality by considering distributions that have themselves an exponen- 
tial singularity at their lower bound m = 1, 

~(6)~exp(-B6 ~) (6--*0) (4.1) 

We go back to Eq. (3.32), set T , (q0)=exp[ -  q~((0)], and again linearize the 
integrand, to obtain 

45(q))-q~(~o+~)~ln dSexp - B 5  - - - s i n 2 q )  qs'(qo) (4.2) 

i I ~ I F e l  

15 
- In H c 

Fig.  3. 

10 

I 
/ 

/ 

I ex = 1.5 / / 

A 2 / '  
/ 

r t / E  
i I 

2 ~ 5 

S a m e  as  Fig.  1, w i th  :~ = 1,5 a n d  A = 2. 
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Fig. 4. 
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Same as Fig. 1, with c~ = 1 and A = 1. ( ..... ) The IDS of the exactly soluble exponen- 
tial distribution with M= A-I= 1, obtained according to Eqs. (3.6~(3.7). 

In the e--*0 limit, the integral can be estimated through the steepest 
descent method. By approximating the difference in the lhs by a derivative, 
we obtain 

~'(qo)=Ce-(2~+l)(sinqo) 2~, with C=B~4~(l+fl 1 ) f l + l  (4.3) 

and an integration leads to 

T~(q~)~expI-Ce-(2~+~)fo~(Sint)2~dt I (4.4) 

Hence, the terms that have been neglected in replacing the lhs of Eq. (4.2) 
by a derivative would give a contribution of relative order e in the square 
brackets. Even with the very singular distribution (4.1), the approximations 
needed by the present approach are legitimate. For  ~0 = re, the integral in 
Eq. (4.4) is elementary, and we obtain, in virtue of Eq. (3.31), 

r ~ ~1/2r(~ + 1/2) _ ] 
H c ~ e x p  L - - L  - ~ - ~ - ] ~  e (2~+1) (4.5) 

This result is especially interesting, since it does not obey Eq. (1.4); excep- 
tional distributions such as (4.1) were indeed excluded in ref. 2. 
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The results of the present paper can be adapted, mutatis mutandis, to 
other linear problems in disordered systems. Let us first mention the tight- 
binding Schr6dinger equation in a random site potential 

--~9n+~--~n ~ + Vn~,=E~n (4.6) 

If the distribution p(V)dV of the potentials V,, has a bounded support 
a ~< V <~ b, then the results of Section 3 hold for the Lifshitz tails of the IDS 
of the problem (4.6) at the top (resp. the bottom) of its spectrum. More 
precisely, when E ~ (b + 2) [resp. E ~ ( a -  2) + ], the parameters have to 
be identified as e 2 = b + 2 - E  and 4 & , = b - V n  (resp. e z = E - a + 2  and 
4&n= V,-a) .  In a recent work on this problem, (19) the authors give 
Eq. (1.8) without the value 2nc~ of the prefactor, and present numerical 
results for a uniform potential distribution. They extract a value s ..~ 3.7 for 
half the c~= 1 prefactor of (1.8), while the correct result is 

+ O(ln Iln el/lln el). Notice that the integral (3.48) reproduces their data 
with remarkable accuracy. Such logarithmic corrections are indeed a 
genuine obstacle to extracting the correct prefactor of Eq. (1.8) from 
numerical data for accessible values of e. 

Let us now discuss the implications of the present results for trapping 
problems. The motion of particles on a one-dimensional lattice with ran- 
dom traps is usually modeled by a master equation of the form (see, e.g., 
refs. 20 and 21) 

dPn/dt = P,  + 1 + Pn ~ - 2P n - ~onP~ = -2 P ~  (4.7) 

P~,(t) denotes the probability for a particle to be at the nth site at time t, 
and the positive trap depths ~o~ have a common distribution p(co)de). The 
IDS H(2) of Eq. (4.7) also has a Lifshitz tail at 2 ~ 0 +, which is described 
by the above results after identification ~2= 2, 4&~ = o),. The quantities of 
interest are the probability R(t) for a particle to return to its starting point, 
given by 

R(t) = e 4, dH(2) 

and the survival probability S(t), given by 

(4.8) 

S ( t ) =  ] 7  e ~.t dH(q=O; 2) (4.9) 

where H(q; 2) is the IDS at a fixed wavevector (momentum) q. As far as 
exponential factors are concerned, both IDS have the same Lifshitz 
singularity. 
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The case where the sites have 0)=0  (i.e., absence of a trap) with a 
finite probability p is well understood. (20~22) It exhibits a stretched 
exponential behavior 

R(t) ~ S(t) ,,~ exp{ - 312(7r In p)Zt]l/3} (4.10) 

For trap depth distribution starting as a power law, p(0))~0)~ 1, the 
results of Section 3 imply 

R(t)~ S(t)~exp { -  3 IT~2ct2t ( ln t )  211/3 } (4.11) 

The "stretching" exponent 1/3 is affected by a universal (ln t) 2/3 correction, 
independently of cc The scale r itself contains a logarithmic t dependence. 
For distributions starting with an exponential singularity of the type (4.1), 
our result (4.5) implies 

R(t) ~ S(t) ,,~ exp( - K? 2p+ 1)/~2~ + 3)) (4.12) 

We finally want to mention the plausible form of the extension of the 
above results to an arbitrary dimension d. Since the heuristic argument that 
led to Eq. (1.8) has been confirmed by the more careful analysis of 
Section 3 in one dimension, its validity can indeed be expected to be quite 
general. Hence the following considerations are meant as reasonable, 
although not rigorous, conjectures. 

For harmonic spectra of random alloys, where light atoms (m = 1) 
occur with a probability p, the Lifshitz tail is known to have the 
form (2 ,  20 ,  21 ) 

Hc--~ exp(--7dlln Ple  -d) (4.13) 

with e 2 ~ (Dma x2  - -  0 )  2 and 7d = (2d2a a/2, where f2a and 2d denote the volume of 
the unit sphere and the lowest eigenvalue of Laplace-Dirichlet operator in 
it, respectively. For mass distributions starting with a power law (1.6), in 
analogy with the one-dimensional case, the probability p is replaced by the 
appropriate power of e, 

Hc ~ exp( - 2~Tde -d [ln el) (4.14) 

For mass distributions with an essential singularity of the type (4.1) we 
predict 

Hc~eXp(--kBe (a+ 2/~)) (4.15) 
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The translation of these results into the language of trapping problems in 
any dimension d is 

(4 .13)~  R ( t ) ~  S ( t ) ~ e x p [ - C 1  Iln pl2/~J+ 2) t algal+2)] (4.16) 

(4.15) ~ R(t) ~ S(t)  ~ exp[ - Ca t (a+ 2~)/(d+ 2~ + 2)] (4.18) 

Equations (4.15) and (4.18) show that, for exceptional distributions 
starting with an exponential singularity, the Lifshitz tail is governed by a 
nonuniversal effective dimensionality 

d ' = d + 2 / ~  (4.19) 

which is always larger than the Euclidean dimension d. An analogous 
modification of the Lifshitz exponent has been recently described ~9) for the 
Schr6dinger equation in a potential with a periodic component and a long- 
ranged random component. Trapping problems on fractal structures ~23) 
present a similar effect: the role of d' is then played by the spectral dimen- 
sion ds, which is usually smaller than d. 

A C K N O W L E D G M E N T  

One of us (Th. M. N.) wishes to thank the members of the SPhT of 
the CEN Saclay, where part of this work was done, for their hospitality. 

REFERENCES 

L I. M. Lifshitz, Adv. Phys. 13:483 (1964). 
2. B. Simon, J. Stat. Phys. 38:65 (1985). 
3. Th. M. Nieuwenhuizen and J. M. Luck, J. Star. Phys. 41:745 (1985). 
4. Th. M. Nieuwenhuizen, J. M. Luck, J. Canisius, J. L. van Hemmen, and W. J. Ventevogel, 

J. Stat. Phys. 45:395 (1986). 
5. Th. M. Nieuwenhuizen and J. M. Luck, J. Stat. Phys. 48:393 (1987). 
6. Th. M. Nieuwenhuizen and J. M. Luck, Physica 145A:161 (1987). 
7. C. Domb, A. A. Maradudin,  E. W. Montroll,  and G. H. Weiss, Phys. Rev. 115:24 (1959). 
8. Th. M. Nieuwenhuizen, Phys. Lett. 103A:333 (1984); Physica 125A:197 (1984). 
9. W. Kirsch and B. Simon, J. Star. Phys. 42:799 (1986). 

10. G. A. Mezincescu, Commun. Math. Phys. 103:167 (1987). 
11. H. Kesten, Acta Math. 131:208 (1973); H. Kesten, M. V. Kozlov, and F. Spitzer, 

Compositio Math. 30:145 (1975); W. Vervaat, Adv. Appl. Prob. 11:750 (1979). 
12. B. Derrida and H. J. Hilhorst, J. Phys. A 16:2641 (1983). 
13. B. Derrida and Y. Pomeau, Phys. Rev. Lett. 48:627 (1982). 
14. J. Bernasconi and W. R. Schneider, J. Phys. A 15:L729 (1983). 



22 Luck and Nieuwenhuizen 

15. Ya. G. Sinai, in Lecture Notes in Physics, Vol. 153 (Springer, Berlin, 1982), p. 12. 
16. C. de Calan, J. M. Luck, Th. M. Nieuwenhuizen, and D. Petritis, J. Phys. A 18:501 (1985). 
17. F. J. Dyson, Phys. Rev. 92:1331 (1953). 
18. H. Schmidt, Phys. Rev. 105:425 (1957). 
19. A. Politi and T. Schneider, Europhys. Lett. 5:715 (1988). 
20. P. Grassberger and I. Procaccia, J. Chem. Phys. 77:6281 (1982). 
21. J. W. Haus and K. W. Kehr, Phys. Rep. 150:263 (1987). 
22. M. D. Donsker and S. Varadhan, Commun. Pure Appl. Math. 32:721 (1979). 
23. J. Klafter, G. Zumofen, and A. Blumen, J. Phys. Lett. (Paris) 45:L49 (1984). 


